Introduction to Elevated Temperature HPLC

In development of the technique of high performance liquid chromatography (HPLC), the use of high pressure was the dominant operational and instrumental characteristic in providing high performance. In comparison with earlier systems driven by lower pressures, far better separations were obtained in shorter times.\(^1,2\) Temperature has been an overlooked operational parameter in HPLC, and the potential advantages of elevated column temperatures, particularly enhanced kinetic and transport properties which are based on the decrease of the viscosity of mobile phase and increase of the analyte diffusivity at higher temperature, have begun to be exploited for rapid analysis of biological macromolecules by HPLC in the past 10 years.\(^3\) There has been a recent review of high temperature liquid chromatography,\(^4\) and the aim of this article is to extend the discussion of the topic and include a critical analysis of the effects of temperature change on peak shape and efficiency.

In most instances the objective of using elevated or high temperature is to increase the speed of separation in order to obtain higher efficiencies and faster results, though there are some situations where selectivity can be manipulated through change of temperature.\(^5,6\) By using a backpressure regulator, as in supercritical fluid chromatography, it is possible to use superheated water as the mobile phase at temperatures up to 250 °C.\(^7,8\) At temperatures ≤140 °C this eluent, alternatively called subcritical water, has the characteristics of an organic solvent in terms of dielectric constant, and also greatly improved solubilization properties for hydrophobic analytes when compared with water at ambient conditions. This allows
reversed-phase HPLC to be performed using a mobile phase containing no organic co-solvents, offering a completely green environment for LC as well as safety and cost benefits. Temperature-programmed HPLC may be used as an alternative to using solvent gradient elution for variation of solvent strength during the run, and this is expected to be of particular utility with small-bore columns which have low thermal mass. Considerable effort has been devoted to developing stationary phases, which are sufficiently robust to withstand use at temperatures of 200 °C or higher, and this work has recently been reviewed.

Only recently has the need for rapid analysis of biological macromolecules drawn attention to the use of elevated column temperatures, and in this field analytical HPLC is routinely performed at temperatures 20–40 °C above ambient temperature. The range of specialist stationary phases is growing steadily and includes various affinity chromatographies based on interactions with chiral selectors, complexing agents, proteins and macrocyclics. These separation mechanisms are often influenced by temperature to a much larger extent than in reversed-phase chromatography of small molecule analytes. Thus, it is now recognized that temperature is an important tool to optimize chromatographic parameters, such as retention, selectivity and efficiency, particularly for macromolecules. Denaturing HPLC, performed on partially renatured double-stranded nucleic acids, has recently been used as a very specific and sensitive method of screening for mutations and in this technique temperature is the most critical experimental variable.

For the purpose of this review, elevated temperature is taken in the broadest sense to mean a temperature higher than ambient, and in this respect it also encompasses the alternative descriptive phrase high temperature. The principal reason why we prefer to use the term elevated temperature is that many applications of interest to chromatographers reviewed in this article are at temperatures in the range 40–80 °C, which are certainly elevated with respect to ambient but would not normally be categorized as high temperatures. When performing database searching, it is recommended that both keyword descriptors: elevated temperature HPLC and high temperature HPLC should be used, because both terms are used in the literature.

Effect of Increase of Temperature on Retention Factor and Selectivity
A number of papers have considered the effect of change of temperature on retention. The effect of temperature on retention factor, k, can be described by the van’t Hoff equation

\[\ln k = -\frac{\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R} + \ln \beta \]

where \(\Delta H^\circ \) is the standard enthalpy change associated with the transfer of the solute from the mobile to the stationary phases, \(\Delta S^\circ \) the corresponding standard entropy change, \(R \) the molar gas constant, \(T \) the absolute temperature and \(\beta \) the phase ratio of the column. From Equation 1, the change of retention factor with temperature results from the \(\Delta H^\circ \) term. Because the \(\Delta H^\circ \) term is normally negative, the retention factor decreases with increase of temperature.

Figure 1 illustrates van’t Hoff plots obtained for benzene derivatives on ZirChrom-Carb and ZirChrom-PBD columns for a change of temperature in excess of 200 °C; results were obtained using super heated water in a study by Kephart et al. Using a Nucleosil C18 AB column, k values for 2,3 dichloroaniline and benzene were 20.1 and 9.6 respectively at 100 °C, but 1.1 and 1.6 at 200 °C. Both studies show that the elution order in a mixture of components of different polarities can be sensitive to temperature.

In a study using subcritical water in the temperature range 100–200 °C, retention of anilines and phenols was shown to be more sensitive to temperature than retention of alkylbenzenes. Using a Nucleosil C18 AB column, k values for benzene were 20.1 and 9.6 respectively at 100 °C, but 1.1 and 1.6 at 200 °C. Both studies show that the elution order in a mixture of components of different polarities can be sensitive to temperature.

Figure 1: van’t Hoff plot of the retention-temperature relationship of benzene derivatives, showing reduced retention with increased temperature and difference in selectivity with the temperature range 90–370 °C (ZirChrom-Carb column) and 90–300 °C (ZirChrom-PBD). Reprinted with permission from ref. [6]. Copyright (2004) Elsevier.
elution using a mobile phase consisting of a 40:60 (v/v) mixture of acetonitrile and water containing 20 mM NH₄F and 50 mM TRIS adjusted to pH 10 with NaOH, there was a significant improvement in selectivity for a mixture of tricyclic antidepressants on increasing the temperature from 40 to 100 °C (Figure 2). Peaks for quinidine, norephedrine and tryptamine, which coeluted at 40 °C, were well resolved at 100 °C. The temperature dependence of separation of alkylbenzenes was also investigated on this column, using 40:60 acetonitrile: water as mobile phase. Whilst all components were baseline resolved under all conditions and the elution times of the last-eluting species n-pentylbenzene decreased from 35 to 12 min on going from 40 to 100 °C, the selectivity decreased for all species. This is consistent with a parallel increase in both k and the magnitude of ΔH° in the sequence benzene to n-pentylbenzene. It was suggested that the selectivity is only likely to change if the retention mechanisms for the solutes in a mixture include more than one process, and this is consistent with the results shown in Figure 1 and discussed in the previous paragraph.

In HPLC with ion exchange stationary phases, cation exchange resins show exceptional thermal stability and can be used over a wide temperature range. Linear van’t Hoff plots are the norm and divalent and monovalent cations were shown to be used over a wide temperature range. Linear van’t Hoff plots are the norm and divalent and monovalent cations were shown to be used over a wide temperature range. The selectivity is only likely to change if the retention mechanisms for the solutes in a mixture include more than one process, and this is consistent with the results shown in Figure 1 and discussed in the previous paragraph.

A detailed theoretical analysis has been performed on the effects of temperature variation on selectivity for situations where retention processes are complex. These include ionizable compounds, solutes that experience two independent retention modes, such as amine compounds and ion-pair chromatography of carboxylic acids. The importance of the effect of temperature on the buffer was also stressed.

In developing and validating an HPLC method, the most common approach is to optimize the mobile phase composition after an appropriate column has been selected. The effect of the solvent strength is usually stronger than the effect of temperature on solute retention. For example, Chen and Horváth found that a 1% (v/v) increase in percentage acetonitrile has the same effect as a 3 °C increase in temperature. The same relative effects were found when components in a mixture are of different types in reversed-phase LC this may be polarity, whilst in ion exchange LC it may be charge number.

Marin et al. have compared solvent and temperature gradient effects for a set of seven analytes, consisting of three neutral, two acidic and two basic compounds, separated on three different stationary phases: a C8 phase supported on polydextril silica, a poly(styrene-divinylbenzene) (PS-DVB) polymer and a graphitic carbon phase. With the C8 phase, working either in 50:50% (v/v) acetonitrile-water using a linear temperature gradient from 35 to 100 °C, or at 35 °C and using a linear solvent gradient from 50 to 100% (v/v), slopes of graphs comparing the effect of increasing the temperature or increasing acetonic content show that a 1% (v/v) increase in percentage acetonic has the same effect as a 3 °C increase in temperature. The same relative effects were found when investigating the same analyte set and the same column but under acidic rather than neutral conditions: here the mobile phase was acetonitrile: water with 0.1% TFA.

On the PS-DVB column, starting at 50% organic content and 50 °C, and ramping linearly to 100% organic or 150 °C, the relative effects of temperature and solvent increase were more similar: a 1% (v/v) increase of % acetonic was equivalent to a 1.7 °C temperature increase. For the graphitic carbon column, starting at 50% organic content and 50 °C, and ramping linearly to 100% organic or 200 °C, a 1% (v/v) increase of % acetonic was equivalent to a 1.7 °C temperature increase.

Kondo and Yang performed isocratic elution on sets of (i) polyhydroxybenzenes and (ii) three basic compounds uracil, aniline and pyridine, using two C18 and one PS-DVB stationary phase. Comparisons were made of subcritical water as eluent at elevated temperature with methanol:water and...
acetonitrile:water mixtures at ambient temperature. For the C18 columns, a 1% acetonitrile increase was equivalent to a 3 °C rise in temperature for subcritical water and a 1% methanol increase was equivalent to about 2 °C rise in water temperature. For the PS-DVB column, the comparisons are a 1% acetonitrile increase was equivalent to a 5–8 °C rise in temperature for subcritical water, and a 1% methanol increase was equivalent to about 3.5 °C rise in water temperature.\(^{18}\)

A number of studies have shown the benefits in terms of environmental impact and cost of using pure water as a mobile phase.\(^6\), \(^8\), \(^18\), \(^22\)–\(^25\) For aniline and phenol, \(k\) values in subcritical water separation at 150 °C are similar to those achieved by using 43% methanol in water or 40% acetonitrile in water.\(^8\)

In their series papers, Zhu et al.\(^{26}\)–\(^{29}\) have explored the combined effects of variation of temperature and solvent strength for predicting separation of neutral and ionizable analytes by a combination of experiments and computer simulation. The highest temperature used was 75 °C. Their research suggested that HPLC method development should commence with studying the effects of changing the gradient steepness and that if further changes in band spacing and resolution are required, changes in temperature should then be explored. The changes in selectivity as a result of varying both parameters are generally independent of each other. Ionizable compounds were found to show greater temperature effects than non-ionizable compounds. An example is in resolution of a drug sample containing 47 acids, bases and neutrals.\(^{28}\) The column used was 5 µm Zorbax RX-C18, 25 × 0.46 cm. The mobile phase was a solvent gradient with component A 0.15 M H₃PO₄, 0.05 M triethylamine and component B acetonitrile, the gradient from 0 to 100%, and flow rate 2 mL min\(^{-1}\).\(^{29}\) With temperature 30 °C and a 20 min gradient, 8 band pairs were incompletely resolved. When the temperature was increased to 66 °C, an additional 5 of the 8 pairs were resolved, including two (salicylic acid/ butabarbital and codeine/aceaminophen) that changed their elution order. Changing the steepness of the gradient, to 60 instead of 20 min at 30 °C, baseline resolution was obtained for 6 of the previously unresolved peak pairs, with two pairs changing elution order. All peaks could be resolved using one or other of the strategies.\(^{28}\)

In a recently published review paper, Dolan has pointed out that temperature can be programmed quite simply in HPLC operating systems, and that during method development changes in temperature can be more convenient than solvent composition or pH changes.\(^{30}\) Temperature programming for HPLC is now being promoted commercially and comparisons are available on the effects of temperature gradients and solvent gradients using a range of columns and a test set of analytes spanning neutral, acidic and basic molecules.\(^{31}\) Representative results from this study have been presented in Figure 3. An example of use of thermal gradient elution is shown in Figure 4, where an isocratic mix of 80:20 acidified water: methanol is used with a linear temperature gradient from 40 to 90 °C and a C8 column to separate and characterize components in a commercial cocoa preparation.\(^{31}\)

For larger molecules, such as peptides and proteins, the selectivity effects of solvent strength and temperature are often complementary.\(^{31}\)–\(^{32}\) The simultaneous optimization of mobile phase composition and temperature has been regarded as a powerful and convenient way to control retention.\(^{33}\) The enthalpies of transfer between mobile and stationary phase are generally greater for large molecules than for small ones.\(^{15}\) Chen and H orváth compared the effects of temperature change on reversed-phase HPLC behaviour of lysozyme and nitrobenzene. \(\Delta H^\circ\) values were found to be in the range \(-50\) to \(-160\) kJ mol\(^{-1}\) for the protein, in comparison with \(\sim -15\) to \(-21\) kJ mol\(^{-1}\) for the small molecule. In both instances values decreased on increasing the percentage of acetonitrile in water-acetonitrile mixtures containing 0.1% trifluoroacetic acid. For large molecules, therefore, their retention is generally quite sensitive to a change in temperature, and this shows that temperature can be an effective retention modulator. As in the instance of small molecules discussed in the previous paragraph, it has been suggested that temperature programming could be a powerful adjunct or even an alternative to mobile phase gradients in the analytical separation of macromolecules by reversed-phase chromatography with columns having low heat capacity.\(^{15}\), \(^{16}\)

In a separation of a standard protein mixture of ribonuclease A, generally greater for large molecules than for small ones.\(^{15}\)

Zhu, Goodall and Wren

Figure 3: Retention time vs °C and retention time vs per cent MeCN for the HyperCarb column using acetonitrile-water with 0.1% TFA as the mobile phase. Circles represent retention times for the solvent gradient and triangles represent retention times for the temperature program. Elution order was aniline, styrene glycol, 2-phenyl-2-propanol (one peak), amitriptyline, acetophenone, salicylic acid, ibuprofen. Reprinted with permission from ref. [21]. Copyright (2004) Elsevier.

Figure 4: Separation of cocoa extract components using thermal gradient from 40 to 90 °C at 10 °C min\(^{-1}\). Column: Seletery Blaze C8, 100 × 4.6 mm. Reproduced from ref. [31] courtesy of Selerity Technologies Inc.
Zhu, Goodall and Wren
cytochrome c, lysozyme and β-lactoglobulin B, gradient elution was performed from 0 to 70% (v/v) ACN in water containing 0.1% TFA. Superimposing a temperature gradient of 10 °C min⁻¹, with a start temperature of 30 °C, provided better resolution than was obtained for gradient elution at a constant temperature of either 30 or 80 °C.¹⁶

Denaturing HPLC is used as a sensitive screening method for mutations in chromosomes.¹⁴ In the presence of a mutation, two heteroduplex DNA fragments are formed in addition to the two original homoduplex fragments. These are separated using elevated temperature HPLC, using a PS-DVB stationary phase and an acetonitrile–aqueous pH 7, 100 mM TEAA, 0.1 mM Na₄EDTA solvent gradient.¹⁴,³⁴ The column temperature must be carefully chosen to maintain partial denaturation, and the optimum value is normally in the range 50–70 °C. The heteroduplexes, which are thermally less stable than the homoduplexes, are retained less on the stationary phase and consequently have shorter elution times. Figure 4 shows results obtained during research on column arrays for multiplexed denaturing HPLC.³⁴ Four monolithic capillary columns with independently controlled thermostatting column sleeves were run in parallel. The same sample, a DNA fragment with 209 base pairs differing only in a mutation from A to G at position 168, was injected onto each column.

In Figure 5(a), all are run under the same conditions, with temperature of 55 °C. Whilst column 1 shows resolution into the four heteroduplex peaks, the peaks coelute on columns 2 and 3. Differences in chromatographic behaviour were ascribed to differences in porosity of the individual monolithic PS-DVB columns. Tuning the temperature (Figure 5(b)) allows the four peaks to be seen on all three columns, with optimum temperatures for columns 2 and 3 of 56 and 57 °C respectively. Increase in percentage of acetonitrile and in temperature both serve to denature the double stranded DNA, and a 0.8% increase in percentage of acetonitrile corresponds to an increase in column temperature of 1 °C. This helps to account for why column 3, on which the DNA fragments eluted at 13% acetonitrile, needed to be run at a temperature 1 °C higher than column 2, where the fragments eluted at 14% acetonitrile. This result shows that for any separations that are very sensitive to temperature, it is necessary to use proper standardization to optimize conditions in order to allow for any column-to-column variability.

Effect of Increase of Temperature on Separation Time, Plate Height, Efficiency and Peak Shape

Increasing the efficiency and speed of separations in LC has always been a key objective for separations scientists. Developments in column technology have been mainly responsible for the advances in these directions.¹⁵ Use of small particles and high flow-rates result in fast separation but require high pressure of the operating system.³⁵–³⁷ The maximum operating pressure normally sets the upper limit for speed of analysis. Operation at elevated temperatures decreases mobile phase viscosity: for acetonitrile–water mixtures, the viscosity is decreased by up to a factor 4 as the temperature is increased from 30 to 120 °C.³ The column backpressure is decreased as well, as shown in Figure 6, allowing use of higher flow-rates.³⁸ It also permits the use of longer columns or smaller particles for separating complex mixtures requiring large plate numbers.³⁵,³⁸

Chromatograms from a typical reversed-phase test mixture separated under temperatures 30 and 100 °C are shown in Figure 7.¹⁷ The flow-rate at 100 °C was 5 mL min⁻¹, five times greater than that at 30 °C. The analysis time was...
decreased from 11 min to 50 s with acceptable resolution. This demonstrates that rapid separation is practicable on conventional LC instrumentation using high temperatures and high flow-rates.

When considering the dependence of column efficiency on flow-rate, the relationship of most practical utility is the Knox equation, which describes the relationship between the reduced plate height, \(h \), and the reduced velocity, \(v \):

\[
\frac{h}{H_{1000}} = \frac{Av^{1/3}}{D_m} + \frac{Bv}{D_m} + Cv
\]

where \(d_p \) is the diameter of the stationary phase particle, \(D_m \) is the diffusion coefficient of the solute in the mobile phase, and the coefficients \(A \), \(B \) and \(C \) are related to the packing quality, longitudinal diffusion of the solute, and the mass transfer contributions, respectively.\(^1,2\) The effect of increase of temperature on the \(A \) term, which is a measure of how well the column is packed, is uncertain.\(^5\) If anything, it should be beneficial because of an improvement of the laminar flow and lateral mixing of molecules among different flow channels; however, this improvement may not be significant.\(^5\) The \(B \) term should be essentially independent of temperature, in the situation where diffusion is the only source of variance contributing to this term. The \(C \) term is expected to decrease with increasing temperature because the mass transfer resistance should decrease: diffusion coefficients in both the stationary phase and the stagnant regions of the mobile phase, together with the stationary phase desorption rate, increase with increasing temperature. It is generally predicted that an increase in column temperature should decrease the reduced plate height, particularly if the mass transfer resistance in the stationary phase is dominant in determining \(h \). At high reduced velocity, where the \(C \) term dominates, there should be a beneficial effect with increasing temperature on speed without compromising resolution.\(^3,5,13,15,22,39\)

Li and Carr have shown that the use of elevated temperatures could improve column efficiency by as much as 30%: the optimum reduced plate height for 1-phenylnonane was 5.5 at 25 °C, and this reduced to 4 at 65 °C.\(^5\) Improvements were particularly significant in the high linear velocity region (a decrease in the \(C \) term of the Knox equation).

Figure 7 gives results obtained with ribonuclease A as analyte using a stationary phase with 5 µm particles of macroreticular cross-linked polystyrene.\(^3\) The mobile phase composition was adjusted at each temperature to provide a constant \(k \) across the temperature range studied, 30—120 °C. Plate height is given as a function of flow velocity and it is evident that the best results are obtained at the highest temperature. There is also least variation of plate height with flow-rate at 120 °C. Thus, in general it will be advantageous to operate columns at elevated temperatures and flow-rates; this will not only improve the speed of separations but also increase the column efficiency because the contribution of longitudinal diffusion should be small relative to the contribution from mass transfer under these conditions. When working at elevated temperatures, use of low flow-rates should be avoided. This follows because of the increase of longitudinal diffusion as...
Elevated Temperature HPLC

Requirements for Successful Elevated Temperature HPLC

As discussed in the previous section, elevated temperature HPLC allows fast and efficient separations. There are several practical constraints to its use. The first and most important requirement is that the analytes must be stable at the temperatures used during the chromatographic run. Denaturation of DNA has been used to advantage in elevated temperature HPLC, but this is a very specific application to nucleic acids.

Secon, a thermally stable stationary phase is required. Many commonly used silica-based C18 phases are easily degraded using aqueous organic mixtures with high water contents at temperatures above 60 °C. Hydrolysis of siloxane bonds (Si-O-Si) causes loss of bonded phase from the silica support and eventually leads to column failure. This hydrolysis is more acute at low pH (<3) and elevated temperatures. Silica-based phases stable at elevated temperatures include Zorbax SB products, available from Agilent, which use special diisobutyl silanes for the bonded phase. The bulky isobutyl groups on these silanes sterically protect the siloxane bonds from hydrolysis and reduce the loss of bonded phase, allowing operation up to 90 °C.

Other stable silica-based columns are those in the Blaze series from Selerity Technologies, which use polydentate bonding chemistry to provide a protective shield against degradation of siloxane bonds and can be used up to 100 °C. A number of specialty stationary phases have been developed which are extremely robust over a wide temperature range, and can withstand temperatures up to 200 °C. Helpful review articles of column technologies are produced annually to accompany the Pittcon exhibition. A comparison of stationary phases used for high temperature liquid chromatography has recently been published in this journal. The temperature range over which the columns are applicable are documented in this review and stability issues are discussed. Table 1 lists manufacturers of phases for which performance has been documented at elevated temperatures and gives the maximum operating temperatures as well as typical applications.

Zirconia-based phases, which were introduced by Carr and his co-workers, have very good thermal stability, and negligible aqueous solubility even at elevated temperatures. Any chemical modification that is made to the surface functional group must also be compatible with both the temperature and the mobile phase conditions used. Both elemental carbon and polybutadiene (PBD)-modified zirconia based stationary phases are compatible with aqueous eluents and are commercially available. Carr's group have conducted many studies on PBD-modified zirconia materials, and shown them to give high efficiencies in LC separations at elevated temperatures. Their studies show that this PBD-coated zirconia column was stable for at least 1300 column volumes at 200 °C. However, there has been a report of potential problems with degradation of zirconia columns with...
aqueous-acetonitrile eluents under temperature programming conditions. Another class of speciality phases are those based on polymers, especially poly(styrene-divinylbenzene) (PS-DVB). There are no solubility problems associated with use of PS-DVB, and robust performance with neutral, acidic and basic solutions has recently been documented to temperatures up to 150 °C. In a study of the long-term stability of polymer columns in separations using superheated water, a PS-DVB column was used at 100 °C for over 11,000 column volumes, then at 150 °C for a further 9,000 column volumes. Both retention and efficiency under these two sets of conditions showed no decrease with usage, proving the excellent column stability under these conditions. The PS-DVB columns should not be used at extreme temperatures, because depolymerization occurs above 250 °C. Graphitic carbon columns are very robust, showing no evidence of degradation over a wide pH range and with temperature programming up to 200 °C.

The third consideration with elevated temperature HPLC concerns the need to ensure that all equipment is compatible with conditions used. A schematic diagram for high-temperature operation is shown in Figure 10. The backpressure regulator is required to ensure that the mobile phase is present in the liquid state: this is essential when working at temperatures above the normal boiling point. It should be emphasized that metal rather than PEEK hardware and fittings must be used for all components in the apparatus subject to high temperatures. A heat exchanger is necessary to avoid any temperature difference between the incoming eluent and the column. Any temperature mismatch can cause peak broadening. The origin and effect of band broadening caused by thermal mismatch is illustrated in Figure 11, with an input stream at a lower temperature than the column heater. There is a radial temperature gradient, resulting in higher temperature at the wall than at the centre. This means that mobile phase will have lower viscosity and stationary phase will

![Figure 10: Block diagram of a simple high-temperature HPLC system. Reprinted with permission from ref. [55] Copyright (2004) American Chemical Society.](image1)

![Figure 11: Band broadening caused by thermal mismatch. Reproduced from ref. [56] courtesy of Metalox Technologies Inc.](image2)

<table>
<thead>
<tr>
<th>Company</th>
<th>Base material (Functional group)</th>
<th>Max temp °C</th>
<th>Application examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent Technologies</td>
<td>Silica with sterically protected siloxane (C3, C8, C18, CN, phenyl)</td>
<td>80 (C18, 90)</td>
<td>Wheat protein</td>
</tr>
<tr>
<td>Hamilton</td>
<td>Poly(styrene-divinylbenzene)</td>
<td>150</td>
<td>Corn syrup, sugars, organic acids</td>
</tr>
<tr>
<td>Jordi</td>
<td>Highly-crosslinked divinylbenzene</td>
<td>150</td>
<td>Phenolic antioxidants</td>
</tr>
<tr>
<td>MicroSolv Technology</td>
<td>Type-C silica bidentate (C18 & C8, cholesterol) DVB-RP</td>
<td>100</td>
<td>Steroids, vitamins, polar organic acids</td>
</tr>
<tr>
<td>Selerity Technologies</td>
<td>Silica polydentate (C4, C8, phenyl)</td>
<td>100</td>
<td>Analgesics</td>
</tr>
<tr>
<td>Shimadzu</td>
<td>Polymer encapsulated silica (C18 and others)</td>
<td>200</td>
<td>Polyaromatic hydrocarbons</td>
</tr>
<tr>
<td>Supelco</td>
<td>Zirconia (C18)</td>
<td>200</td>
<td>Peptide tryptic digests</td>
</tr>
<tr>
<td>Thermo Electron</td>
<td>Porous graphitic carbon</td>
<td>200</td>
<td>Narcotics, analgesics</td>
</tr>
<tr>
<td>ZirChrom Separations</td>
<td>Zirconia (C18, PS, PBD, Carb) Zirconia-carbon (C18)</td>
<td>150 (Carb, 200)</td>
<td>Anticonvulsants, barbiturates, PAHs, steroids</td>
</tr>
</tbody>
</table>
Zhu, Goodall and Wren

have lower retention at the wall; both effects cause analyte
at the centre to lag behind that at the wall. Methods to ensure
appropriate preheating have been recently reviewed,21 and
ovens and column heaters specifically designed for elevated
temperature HPLC and temperature-programmed HPLC are
now available.56–57 Proper thermal preconditioning is also vital
in denaturing HPLC and a heat exchanger must be
incorporated prior to the column.14 In instances such as this,
where the quality of the chromatography is extremely sensitive
to temperature, measurements with certified reference probes
should be performed to ensure that the temperature displayed
on the column oven corresponds to the actual temperature in
the column.14

Conclusions
Use of elevated temperatures can bring benefits to HPLC,
particularly in instances where columns are stable over an
extended temperature range. When working with mixtures of
analytes in different compound classes, selectivity can be
dependent on temperature. Decrease in viscosity of the mobile
phase on increasing the temperature allows run times to be
reduced, and the improvement in mass transfer rates between
mobile and stationary phases allows good chromatographic
efficiency to be obtained at flow-rates higher than those
optimal at ambient temperature. Whilst solvent gradient
equilution is normally the preferred method for use with mixtures
of analytes with widely varying retention factors, temperature
gradient elution offers an alternative open to more separation
scientists now that specialty suppliers are promoting the
technology. In the field of gas chromatography, high-speed
temperature gradients obtained using resistive heating have
been used to advantage in developing fast separations with
capillary columns. We see potential for analogous developments
in the field of capillary HPLC separations, where rapid thermal
gradient elution is normally the preferred method for use with
mixtures of analytes in different compound classes, selectivity can
be understood better. He is also interested in how

designed for elevated

References
33. http://www.seliertly.com

Cuiyu Zhu is a graduate student in Analytical Science working at the University of York, UK, sponsored by AstraZeneca UK and the Overseas Research Studentship scheme. Her research involves developing an understanding of the physicochemical processes inside HPLC columns at elevated temperatures. She obtained her MSc on the topic of micro-column liquid chromatography at Dalian Institute of Chemical Physics, P. R. China.

David Goodall is a Professor in Chemistry at the University of York, UK, with research interests in analytical science, in particular CE, HPLC and miniaturized detectors. He has won awards from the Chromatographic Society and the Royal Society of Chemistry for work in these fields, and from the British Technology Group for technology transfer. In July each year he leads York’s course on CE, providing continuing professional development for separations scientists working in industry.

Stephen Wren is a Principal Scientist within Pharmaceutical and Analytical R&D at AstraZeneca in the UK. His research interests are mainly in separation science, particularly in the techniques of CE and HPLC, and how the factors determining efficiency and selectivity can be understood better. He is also interested in how separation techniques can be applied to controlling and understanding the quality and consistency of new medicines.